P1034 [2003年N0IP提高组] 神经网络
描述
【问题背景】
人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。
【问题描述】
在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经
元之间至多有一条边相连,下图是一个神经元的例子:
神经元〔编号为1)
图中,X1—X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个内在参数。神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。
如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。
现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。
输入
第一行是两个整数n(1≤n≤20)和p。接下来n行,每行两个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由两个整数i,j及一个整数Wij,表示连接神经元i、j的边权值为Wij。
输出
每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅输出最后状态非零的输出层神经元状态,并且按照编号由小到大顺序输出!
若输出层的神经元最后状态均为 0,则输出 NULL。
若输出层的神经元最后状态均为 0,则输出 NULL。
样例输入
样例输出