P1678 [2017年NOIP提高组] 宝藏
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
L×K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
第一行两个用空格分离的正整数 n 和 m,代表宝藏屋的个数和道路数。
接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1~n),和这条道路的长度 v。
输出共一行,一个正整数,表示最小的总代价。
【样例解释1】
小明选定让赞助商打通了 1 号宝藏屋。小明开发了道路 1→2,挖掘了 2 号宝 藏。开发了道路 1→4,挖掘了 4 号宝藏。还开发了道路 4→3,挖掘了 3 号宝 藏。工程总代价为:1×1+1×1+1×2=4
【数据规模与约定】
对于 20%的数据: 保证输入是一棵树,1≤n≤8,v≤5000 且所有的 v 都相等。
对于 40%的数据: 1≤n≤8,0≤m≤1000,v≤5000 且所有的 v 都相等。
对于 70%的数据: 1≤n≤8,0≤m≤1000,v≤5000
对于 100%的数据: 1≤n≤12,0≤m≤1000,v≤500000